skip to main content


Search for: All records

Creators/Authors contains: "Damelin, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    We face complex global issues such as climate change that challenge our ability as humans to manage them. Models have been used as a pivotal science and engineering tool to investigate, represent, explain, and predict phenomena or solve problems that involve multi-faceted systems across many fields. To fully explain complex phenomena or solve problems using models requires both systems thinking (ST) and computational thinking (CT). This study proposes a theoretical framework that uses modeling as a way to integrate ST and CT. We developed a framework to guide the complex process of developing curriculum, learning tools, support strategies, and assessments for engaging learners in ST and CT in the context of modeling. The framework includes essential aspects of ST and CT based on selected literature, and illustrates how each modeling practice draws upon aspects of both ST and CT to support explaining phenomena and solving problems. We use computational models to show how these ST and CT aspects are manifested in modeling.

     
    more » « less
  3. Abstract

    Developing and using models to make sense of phenomena or to design solutions to problems is a key science and engineering practice. Classroom use of technology-based tools can promote the development of students’ modelling practice, systems thinking, and causal reasoning by providing opportunities to develop and use models to explore phenomena. In previous work, we presented four aspects of system modelling that emerged during our development and initial testing of an online system modelling tool. In this study, we provide an in-depth examination and detailed evidence of 10th grade students engaging in those four aspects during a classroom enactment of a system modelling unit. We look at the choices students made when constructing their models, whether they described evidence and reasoning for those choices, and whether they described the behavior of their models in connection with model usefulness in explaining and making predictions about the phenomena of interest. We conclude with a set of recommendations for designing curricular materials that leverage digital tools to facilitate the iterative constructing, using, evaluating, and revising of models.

     
    more » « less
  4. Abstract

    This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that  involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students  take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT.

     
    more » « less